Realiza varios ajustes para melhorar o tracking e o render de video

This commit is contained in:
LeoMortari
2025-12-18 02:26:25 -03:00
parent 78e35d65fd
commit 07d301f110
11 changed files with 984 additions and 316 deletions

View File

@@ -1,7 +1,10 @@
services:
video-render:
restart: unless-stopped
build: .
build:
context: .
no_cache: true
dockerfile: dockerfile
environment:
- RABBITMQ_PASS=${RABBITMQ_PASS}
- OPENROUTER_API_URL=${OPENROUTER_API_URL:-https://openrouter.ai/api/v1/chat/completions}
@@ -9,12 +12,17 @@ services:
- OPENROUTER_MODEL=${OPENROUTER_MODEL:-openai/gpt-oss-20b:free}
- OPENROUTER_PROMPT_PATH=${OPENROUTER_PROMPT_PATH:-prompts/generate.txt}
- FASTER_WHISPER_MODEL_SIZE=${FASTER_WHISPER_MODEL_SIZE:-medium}
- SMART_FRAMING_SMOOTHING_WINDOW=${SMART_FRAMING_SMOOTHING_WINDOW:-30}
- SMART_FRAMING_MAX_VELOCITY=${SMART_FRAMING_MAX_VELOCITY:-40}
- SMART_FRAMING_FRAME_SKIP=${SMART_FRAMING_FRAME_SKIP:-2}
- SMART_FRAMING_PERSON_SWITCH_COOLDOWN=${SMART_FRAMING_PERSON_SWITCH_COOLDOWN:-60}
volumes:
- "/root/videos:/app/videos"
- "/root/outputs:/app/outputs"
- "/root/prompts:/app/prompts"
# - "./videos:/app/videos"
# - "./outputs:/app/outputs"
# - "./prompts:/app/prompts"
command: "python -u main.py"
networks:
- dokploy-network

View File

@@ -1,85 +1,118 @@
Voce e especialista em viralidade de redes sociais (TikTok, Instagram Reels, YouTube Shorts). Analise a transcricao e selecione trechos com MAXIMO potencial viral, priorizando qualidade sobre quantidade.
Você é especialista em viralidade de redes sociais (TikTok, Instagram Reels, YouTube Shorts). Sua missão: EXTRAIR O MÁXIMO de clips virais possíveis, priorizando QUANTIDADE + QUALIDADE.
PROCESSO DE ANALISE:
1. Mapear potenciais trechos na transcricao
2. Avaliar cada trecho usando sistema de pontuacao abaixo
🎯 OBJETIVO: Transformar cada vídeo em MÚLTIPLOS clips que podem viralizar
PROCESSO DE ANÁLISE:
1. Mapear TODOS os potenciais trechos virais na transcrição
2. Avaliar cada trecho usando sistema de pontuação abaixo
3. Rankear do maior para menor score viral
4. Selecionar apenas os top-ranked baseado na duracao do video
4. Selecionar TODOS os trechos com score ≥ 60 (não seja conservador!)
SISTEMA DE PONTUACAO VIRAL (0-100 pontos):
SISTEMA DE PONTUAÇÃO VIRAL (0-100 pontos):
HOOK/ABERTURA (0-25 pontos):
[25] Frase choqueante, pergunta polemica ou promessa ousada
[20] Historia intrigante ou situacao inusitada
[15] Afirmacao interessante mas previsivel
[10] Introducao generica mas aceitavel
[0] "Oi", "entao", silencio ou conteudo fraco
🪝 GANCHO INICIAL (0-30 pontos) - CRÍTICO PARA VIRALIZAÇÃO:
[30] Frase CHOCANTE, pergunta POLÊMICA ou promessa OUSADA nos primeiros 3 segundos
[25] Hook forte: "Você não vai acreditar...", "O segredo que ninguém conta...", "Isso mudou tudo..."
[20] Pergunta intrigante ou afirmação controversa
[15] História interessante mas gancho fraco
[10] Início genérico mas aceitável
[0] "Oi", "então", "bem", silêncio - DESCARTAR
GATILHO EMOCIONAL (0-25 pontos):
[25] Emocao extrema: raiva, choque, riso intenso, inspiracao profunda
[20] Emocao forte: surpresa, indignacao, humor, curiosidade intensa
[15] Emocao moderada: interesse, leve humor, curiosidade
[10] Emocao fraca: informativo sem impacto emocional
[0] Monotono, tecnico, sem apelo emocional
🔥 GATILHO EMOCIONAL (0-25 pontos):
[25] Emoção EXTREMA: raiva, choque, riso intenso, WTF moment, revelação bombástica
[20] Emoção forte: surpresa, indignação, humor, curiosidade intensa
[15] Emoção moderada: interesse, leve humor, insight interessante
[10] Emoção fraca: informativo sem impacto
[0] Monótono, técnico, sem apelo emocional - EVITAR
VALOR/UTILIDADE (0-20 pontos):
[20] Segredo valioso, insight transformador ou informacao exclusiva
[15] Ensina algo pratico e imediatamente aplicavel
[10] Opiniao interessante ou perspectiva util
[5] Informacao generica ou conhecimento comum
[0] Nenhum valor pratico, puro enrolation
💎 VALOR/UTILIDADE (0-20 pontos):
[20] Segredo VALIOSO, insight transformador, informação EXCLUSIVA
[15] Ensina algo prático e IMEDIATAMENTE aplicável
[10] Opinião interessante ou perspectiva única
[5] Informação genérica ou conhecimento comum
[0] Nenhum valor prático, puro "enrolation" - DESCARTAR
ESTRUTURA NARRATIVA (0-15 pontos):
[15] Historia completa com inicio, conflito/climax e resolucao
[10] Segmento com comeco e fim coerentes
📖 ESTRUTURA NARRATIVA (0-15 pontos):
[15] História COMPLETA com início, conflito/clímax e resolução satisfatória
[10] Segmento com começo e fim coerentes, faz sentido isolado
[5] Trecho com sentido mas cortado abruptamente
[0] Fragmento sem contexto ou conclusao
[0] Fragmento sem contexto - NÃO USAR
RITMO E ENERGIA (0-15 pontos):
[15] Dinamico, sem pausas, alta energia, palavras impactantes
[10] Bom ritmo com pausas naturais curtas
[5] Ritmo lento mas aceitavel
[0] Muitas pausas, hesitacoes, monotonia, silencio
RITMO E ENERGIA (0-10 pontos):
[10] DINÂMICO, sem pausas longas, alta energia, palavras impactantes
[7] Bom ritmo com pausas naturais curtas (< 2s)
[3] Ritmo lento mas aceitável
[0] Muitas pausas (> 3s), hesitações, monotonia - EVITAR
REGRAS DE QUANTIDADE:
5-10 min: 3 clipes (minimo 1 se score alto)
10-20 min: 4 clipes
20-30 min: 5 clipes
30+ min: 6 clipes (maximo absoluto)
REGRAS DE QUANTIDADE (SER AGRESSIVO):
📊 Quantidade MÍNIMA por duração:
- 5-10 min: MÍNIMO 4-6 clips
- 10-15 min: MÍNIMO 6-8 clips
- 15-20 min: MÍNIMO 8-10 clips
- 20-30 min: MÍNIMO 10-15 clips
- 30+ min: MÍNIMO 15-20 clips
IMPORTANTE: Priorize qualidade. Melhor 3 clipes score 80+ que 6 clipes score 50. Se poucos momentos virais, retorne apenas os melhores (minimo 1).
🎯 REGRA DE OURO: 1 clip a cada 2-3 minutos de vídeo (NO MÍNIMO)
- Se encontrar momentos virais, SEMPRE selecione!
- Melhor ter 3 clips perfeitos que 10 clips bons
CRITERIOS DE SELECAO:
- Score viral maior ou igual 60 pontos (idealmente maior ou igual 70)
- Duracao ideal: 60-90s
- Duracao minima: 60s | Duracao maxima: 120s
- Sem sobreposicao (end de um menor que start do proximo)
- Inicio e fim coerentes
CRITÉRIOS DE SELEÇÃO:
- Score viral 60 pontos (idealmente 70)
- Duração ideal: 60-120s (formato ideal para Reels/Shorts)
- Duração mínima: 60s | Duração máxima: 120s
- Sem sobreposição temporal
- DEVE ter gancho forte nos primeiros 3 segundos
- Início e fim coerentes
EVITE:
- Introducoes genericas
- Trechos com silencio/pausas maiores que 3s
- Explicacoes tecnicas sem gancho emocional
- Segmentos sem conclusao
- Momentos de transicao
GANCHOS QUE FAZEM VIRALIZAR (use como filtro):
- "O que ninguém te conta sobre..."
- "O erro que 90% das pessoas cometem..."
- "Você não vai acreditar o que aconteceu..."
- Revelações chocantes ou contraintuitivas
- Antes vs Depois, transformações
- Segredos, bastidores, verdades ocultas
- Polêmicas, opiniões fortes, hot takes
- Histórias dramáticas com reviravolta
- Dicas práticas e acionáveis
- Momentos de humor genuíno
FORMATO JSON (retorne APENAS isto):
{"highlights":[{"start":<float>,"end":<float>,"summary":"Score estimado e gatilhos principais"}]}
❌ EVITE (mas não descarte se score alto):
- Introduções genéricos SEM gancho
- Trechos com pausas > 3s consecutivas
- Explicações técnicas SEM gancho emocional
- Segmentos sem conclusão clara
- Momentos de transição vazios
REGRAS TECNICAS:
- Float com ponto decimal (45.5 NAO 45,5)
FORMATO JSON (retorne APENAS isto, SEM texto adicional):
{
"highlights": [
{
"start": <float>,
"end": <float>,
"summary": "Score: XX/100 | Gancho: [descreva] | Gatilho: [descreva]",
}
]
}
REGRAS TÉCNICAS:
- Float com ponto decimal (45.5 NÃO 45,5)
- Timestamps exatos dos segments fornecidos
- Ordem cronologica (start crescente)
- Minimo 1, maximo 6 highlights
- Summary conciso (1-2 frases)
- Ordem cronológica (start crescente)
- Summary conciso mas informativo (2-3 frases)
TAREFA:
1. Leia transcricao e timestamps
2. Avalie e pontue trechos mentalmente
3. Rankear por score viral
4. Selecione top-ranked baseado na duracao
5. Retorne JSON
6. Se video fraco, retorne pelo menos 1 highlight
TAREFA PASSO A PASSO:
1. Leia transcrição completa
2. Identifique TODOS os momentos potencialmente virais
3. Avalie e pontue cada trecho (seja generoso!)
4. Rankear por score viral
5. Selecione TODOS com score ≥ 60
6. Garanta mínimo de 1 clip a cada 5 minutos
7. Retorne JSON completo
Objetivo: MAXIMIZAR chance de viralizar. Seja criterioso, apenas melhores trechos.
⚠️ IMPORTANTE:
- NÃO seja conservador! Se encontrou 10 momentos bons, retorne os 10!
- Pense em MAXIMIZAR alcance: mais clips = mais chances de viralizar
- Se vídeo tem conteúdo fraco, seja criterioso, mas SEMPRE retorne pelo menos 3-5 clips
- Priorize clips com GANCHOS FORTES - gancho fraco = baixo alcance
🎯 MINDSET: Você é um criador de conteúdo viral. Seu objetivo é extrair MÁXIMO valor do vídeo original.

View File

@@ -13,10 +13,10 @@ TEMP_ROOT = BASE_DIR / "temp"
@dataclass(frozen=True)
class RabbitMQSettings:
# host: str = os.environ.get("RABBITMQ_HOST", "154.12.229.181")
# port: int = int(os.environ.get("RABBITMQ_PORT", 32790))
host: str = os.environ.get("RABBITMQ_HOST", "rabbitmq")
port: int = int(os.environ.get("RABBITMQ_PORT", 5672))
host: str = os.environ.get("RABBITMQ_HOST", "154.12.229.181")
port: int = int(os.environ.get("RABBITMQ_PORT", 32790))
# host: str = os.environ.get("RABBITMQ_HOST", "rabbitmq")
# port: int = int(os.environ.get("RABBITMQ_PORT", 5672))
user: str = os.environ.get("RABBITMQ_USER", "admin")
password: str = os.environ.get("RABBITMQ_PASS")
consume_queue: str = os.environ.get("RABBITMQ_QUEUE", "to-render")
@@ -62,11 +62,13 @@ class RenderingSettings:
subtitle_font_size: int = int(os.environ.get("RENDER_SUBTITLE_FONT_SIZE", 64))
caption_min_words: int = int(os.environ.get("CAPTION_MIN_WORDS", 2))
caption_max_words: int = int(os.environ.get("CAPTION_MAX_WORDS", 2))
# Smart framing settings
# Smart framing settings - CONTAINMENT TRACKING mode
enable_smart_framing: bool = os.environ.get("ENABLE_SMART_FRAMING", "true").lower() in ("true", "1", "yes")
smart_framing_min_confidence: float = float(os.environ.get("SMART_FRAMING_MIN_CONFIDENCE", 0.5))
smart_framing_smoothing_window: int = int(os.environ.get("SMART_FRAMING_SMOOTHING_WINDOW", 20))
smart_framing_frame_skip: int = int(os.environ.get("SMART_FRAMING_FRAME_SKIP", 2)) # Process every Nth frame (CPU optimization)
smart_framing_min_confidence: float = float(os.environ.get("SMART_FRAMING_MIN_CONFIDENCE", 0.3)) # Lowered for better cartoon detection
smart_framing_smoothing_window: int = int(os.environ.get("SMART_FRAMING_SMOOTHING_WINDOW", 30)) # Reduced - not needed with containment tracking
smart_framing_frame_skip: int = int(os.environ.get("SMART_FRAMING_FRAME_SKIP", 1)) # Process every frame for smooth 30 FPS tracking
smart_framing_max_velocity: int = int(os.environ.get("SMART_FRAMING_MAX_VELOCITY", 20)) # Moderate - only used during transitions
smart_framing_person_switch_cooldown: int = int(os.environ.get("SMART_FRAMING_PERSON_SWITCH_COOLDOWN", 999999)) # DISABLED - never switch people
@dataclass(frozen=True)

View File

@@ -7,7 +7,7 @@ and identify who is speaking in video content using MediaPipe and audio analysis
from __future__ import annotations
import logging
from dataclasses import dataclass
from dataclasses import dataclass, field
from typing import List, Optional, Tuple
import cv2
@@ -50,20 +50,22 @@ class FrameContext:
active_speakers: List[int] # indices of speaking faces
primary_focus: Optional[Tuple[int, int]] # (x, y) center point
layout_mode: str # "single", "dual_split", "grid"
selected_people: List[int] = field(default_factory=list) # indices of people selected for display (max 2)
class MediaPipeDetector:
"""Face and pose detection using MediaPipe."""
"""Face and pose detection using MediaPipe with OpenCV Haar Cascade fallback."""
def __init__(self, min_detection_confidence: float = 0.5, min_tracking_confidence: float = 0.5):
def __init__(self, min_detection_confidence: float = 0.3, min_tracking_confidence: float = 0.3):
self.min_detection_confidence = min_detection_confidence
self.min_tracking_confidence = min_tracking_confidence
self.mp_face_detection = mp.solutions.face_detection
self.mp_face_mesh = mp.solutions.face_mesh
# MediaPipe detectors with lower confidence for better cartoon detection
self.face_detection = self.mp_face_detection.FaceDetection(
min_detection_confidence=min_detection_confidence,
model_selection=1
model_selection=0 # Changed to 0 for better detection of varied faces (including cartoons)
)
self.face_mesh = self.mp_face_mesh.FaceMesh(
@@ -73,11 +75,17 @@ class MediaPipeDetector:
static_image_mode=False
)
logger.info("MediaPipe detector initialized")
# OpenCV Haar Cascade as fallback for cartoon/anime faces
self.haar_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Alternative cascade for profile/side faces
self.haar_cascade_profile = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_profileface.xml')
logger.info(f"Hybrid detector initialized (MediaPipe confidence={min_detection_confidence}, OpenCV Haar Cascade enabled)")
def detect_faces(self, frame: np.ndarray) -> List[FaceDetection]:
"""
Detect faces in a frame.
Detect faces in a frame using hybrid approach (MediaPipe + OpenCV Haar Cascade).
Args:
frame: RGB image array
@@ -94,6 +102,7 @@ class MediaPipeDetector:
else:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Try MediaPipe first
results = self.face_detection.process(frame_rgb)
faces = []
@@ -126,8 +135,111 @@ class MediaPipeDetector:
center_y=center_y
))
# Fallback to OpenCV Haar Cascade if MediaPipe found nothing
if not faces:
faces = self._detect_faces_haar_cascade(frame, width, height)
return faces
def _detect_faces_haar_cascade(self, frame: np.ndarray, width: int, height: int) -> List[FaceDetection]:
"""
Detect faces using OpenCV Haar Cascade (works better with cartoons/anime).
Args:
frame: Image frame (BGR format)
width: Frame width
height: Frame height
Returns:
List of detected faces
"""
# Convert to grayscale for Haar Cascade
if len(frame.shape) == 3:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
else:
gray = frame
# Detect frontal faces with more sensitive parameters
frontal_faces = self.haar_cascade.detectMultiScale(
gray,
scaleFactor=1.05, # More sensitive to size variations
minNeighbors=3, # Lower threshold for detection (more permissive)
minSize=(30, 30), # Smaller minimum size
flags=cv2.CASCADE_SCALE_IMAGE
)
# Also try profile faces
profile_faces = self.haar_cascade_profile.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=3,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
# Combine frontal and profile detections
all_faces = []
for (x, y, w, h) in frontal_faces:
x = max(0, min(x, width - 1))
y = max(0, min(y, height - 1))
w = min(w, width - x)
h = min(h, height - y)
center_x = x + w // 2
center_y = y + h // 2
all_faces.append(FaceDetection(
x=x,
y=y,
width=w,
height=h,
confidence=0.7, # Haar Cascade doesn't provide confidence, use fixed value
center_x=center_x,
center_y=center_y
))
for (x, y, w, h) in profile_faces:
# Check if this face overlaps significantly with any frontal face
overlap = False
for existing_face in all_faces:
# Calculate IoU (Intersection over Union)
x1_overlap = max(x, existing_face.x)
y1_overlap = max(y, existing_face.y)
x2_overlap = min(x + w, existing_face.x + existing_face.width)
y2_overlap = min(y + h, existing_face.y + existing_face.height)
if x1_overlap < x2_overlap and y1_overlap < y2_overlap:
overlap_area = (x2_overlap - x1_overlap) * (y2_overlap - y1_overlap)
face_area = w * h
if overlap_area / face_area > 0.3: # 30% overlap threshold
overlap = True
break
if not overlap:
x = max(0, min(x, width - 1))
y = max(0, min(y, height - 1))
w = min(w, width - x)
h = min(h, height - y)
center_x = x + w // 2
center_y = y + h // 2
all_faces.append(FaceDetection(
x=x,
y=y,
width=w,
height=h,
confidence=0.6, # Slightly lower confidence for profile
center_x=center_x,
center_y=center_y
))
if all_faces:
logger.debug(f"Haar Cascade detected {len(all_faces)} faces (MediaPipe failed)")
return all_faces
def detect_face_landmarks(self, frame: np.ndarray) -> List[FaceDetection]:
"""
Detect faces with landmarks for lip sync detection.
@@ -203,8 +315,8 @@ class AudioActivityDetector:
def detect_speaking_periods(
self,
audio_samples: np.ndarray,
threshold: float = 0.02,
min_speech_duration: float = 0.1
threshold: float = 0.01, # Reduced from 0.02 for better speech detection
min_speech_duration: float = 0.05 # Reduced from 0.1 to catch shorter utterances
) -> List[Tuple[float, float]]:
"""
Detect periods of speech in audio.
@@ -250,6 +362,16 @@ class AudioActivityDetector:
if end_time - start_time >= min_speech_duration:
periods.append((start_time, end_time))
# Log detected speech periods for debugging
if periods:
total_speech_time = sum(end - start for start, end in periods)
logger.info(f"Audio speech detection: {len(periods)} periods found, "
f"total {total_speech_time:.1f}s of speech (threshold={threshold})")
else:
max_energy = max(energies) if energies else 0
logger.warning(f"No speech detected! Max energy={max_energy:.4f}, threshold={threshold} "
f"(try lowering threshold if speech should be present)")
return periods
def is_speaking_at_time(self, speaking_periods: List[Tuple[float, float]], time: float) -> bool:
@@ -263,12 +385,29 @@ class AudioActivityDetector:
class ContextAnalyzer:
"""Analyzes video context to determine focus and layout."""
def __init__(self):
def __init__(self, person_switch_cooldown: int = 30):
self.detector = MediaPipeDetector()
self.audio_detector = AudioActivityDetector()
self.previous_faces: List[FaceDetection] = []
logger.info("Context analyzer initialized")
# Person tracking state
self.current_selected_people: List[int] = [] # Indices of people currently on screen
self.last_switch_frame: int = -999 # Frame when we last switched people
self.person_switch_cooldown = person_switch_cooldown # Minimum frames before switching
# Stability tracking to prevent flip-flopping
self.desired_people_history: List[List[int]] = [] # Track recent desired selections
self.stability_threshold = 20 # Frames needed to confirm a switch (increased for more stability)
self.last_switched_people: List[int] = [] # People we just switched FROM
# Focus stability: track recent focus points for temporal smoothing
self.focus_history: List[Tuple[int, int]] = []
self.focus_history_size: int = 5 # Keep last 5 focus points for smoothing
# Debug logging
self.frame_log_interval = 30 # Log every N frames
logger.info(f"Context analyzer initialized (cooldown={person_switch_cooldown} frames, focus_smoothing={self.focus_history_size})")
def analyze_frame(
self,
@@ -296,33 +435,47 @@ class ContextAnalyzer:
# Determine who is speaking
active_speakers = []
has_audio_speech = speaking_periods and self.audio_detector.is_speaking_at_time(speaking_periods, timestamp)
for i, face in enumerate(faces):
is_speaking = False
if speaking_periods and self.audio_detector.is_speaking_at_time(speaking_periods, timestamp):
# Check audio-based speech detection
if has_audio_speech:
is_speaking = True
# Check lip movement (visual speech detection)
if face.landmarks and len(self.previous_faces) > i:
is_speaking = is_speaking or self._detect_lip_movement(face, self.previous_faces[i])
if is_speaking:
active_speakers.append(i)
num_faces = len(faces)
num_speakers = len(active_speakers)
# Debug: Log speech detection
if frame_number % 30 == 0: # Every second at 30fps
logger.info(f"Speech detection - Frame {frame_number}: audio_active={has_audio_speech}, "
f"speakers={active_speakers}, total_faces={len(faces)}")
if num_faces == 0:
layout_mode = "single"
elif num_faces == 1:
layout_mode = "single"
elif num_faces == 2:
layout_mode = "dual_split"
elif num_faces >= 3:
layout_mode = "dual_split"
else:
layout_mode = "single"
# Select THE person to focus on (always single person)
# Priority: 1) Who is speaking, 2) Who is most centered
selected_people = self._select_person_to_focus(
faces,
active_speakers,
frame_number,
frame.shape[1], # frame width for center calculation
frame.shape[0] # frame height for center calculation
)
primary_focus = self._calculate_focus_point(faces, active_speakers)
# Always use single-person layout (no split screen)
layout_mode = "single"
primary_focus = self._calculate_focus_point(faces, selected_people)
# Debug logging every N frames
if frame_number % self.frame_log_interval == 0:
focus_reason = "speaker" if active_speakers else "no_speech_detected"
logger.info(f"Frame {frame_number}: {len(faces)} faces, "
f"{len(active_speakers)} speakers, focus={selected_people}, reason={focus_reason}")
self.previous_faces = faces
@@ -332,7 +485,8 @@ class ContextAnalyzer:
detected_faces=faces,
active_speakers=active_speakers,
primary_focus=primary_focus,
layout_mode=layout_mode
layout_mode=layout_mode,
selected_people=selected_people
)
def _detect_lip_movement(self, current_face: FaceDetection, previous_face: FaceDetection) -> bool:
@@ -363,36 +517,309 @@ class ContextAnalyzer:
threshold = 2.0
return abs(current_dist - previous_dist) > threshold
def _calculate_focus_point(
def _select_person_to_focus(
self,
faces: List[FaceDetection],
active_speakers: List[int]
) -> Optional[Tuple[int, int]]:
active_speakers: List[int],
frame_number: int,
frame_width: int,
frame_height: int
) -> List[int]:
"""
Calculate the primary focus point based on detected faces and speakers.
IMPORTANT: This focuses on ONE person to avoid focusing on empty space (table).
When multiple people are present, we pick the most relevant person, not average positions.
Select THE single person to focus on.
Priority: 1) Who is speaking, 2) Who is most centered in frame
Args:
faces: List of detected faces
active_speakers: Indices of faces that are speaking
active_speakers: Indices of people currently speaking
frame_number: Current frame number
frame_width: Frame width for center calculation
frame_height: Frame height for center calculation
Returns:
List with single person index [idx], or empty list if no faces
"""
if not faces:
self.current_selected_people = []
return []
# If only 1 person, always focus on them
if len(faces) == 1:
self.current_selected_people = [0]
return [0]
# Check if we can switch people (cooldown period)
frames_since_last_switch = frame_number - self.last_switch_frame
can_switch = frames_since_last_switch >= self.person_switch_cooldown
# Calculate frame center for distance comparison
frame_center_x = frame_width / 2
frame_center_y = frame_height / 2
# ULTRA-STABLE MODE: Select ONE person at start, NEVER switch
# This completely eliminates switching-related instability
desired_person_idx = None
# If we already have someone selected, ALWAYS KEEP THEM (never switch)
if self.current_selected_people and len(self.current_selected_people) > 0:
current_idx = self.current_selected_people[0]
if current_idx < len(faces):
# Current person still detected - keep them
desired_person_idx = current_idx
else:
# Current person lost - try to find them again by position/size similarity
# This handles temporary detection failures
current_person_found = False
if self.previous_faces and current_idx < len(self.previous_faces):
prev_face = self.previous_faces[current_idx]
# Find most similar face by position and size
best_match_idx = None
best_match_score = float('inf')
for idx, face in enumerate(faces):
# Distance between centers
dx = face.center_x - prev_face.center_x
dy = face.center_y - prev_face.center_y
dist = np.sqrt(dx**2 + dy**2)
# Size similarity
size_diff = abs(face.width - prev_face.width) + abs(face.height - prev_face.height)
score = dist + size_diff * 0.5
if score < best_match_score:
best_match_score = score
best_match_idx = idx
if best_match_idx is not None and best_match_score < 1000:
desired_person_idx = best_match_idx
current_person_found = True
if not current_person_found:
# Really lost - select most confident
face_confidences = [(idx, face.confidence) for idx, face in enumerate(faces)]
face_confidences.sort(key=lambda x: x[1], reverse=True)
desired_person_idx = face_confidences[0][0]
logger.warning(f"Current person permanently lost - selecting new: {desired_person_idx}")
else:
# First frame - select most confident person ONCE
face_confidences = [(idx, face.confidence) for idx, face in enumerate(faces)]
face_confidences.sort(key=lambda x: x[1], reverse=True)
desired_person_idx = face_confidences[0][0]
logger.info(f"INITIAL SELECTION - Person {desired_person_idx} (will be tracked throughout entire video)")
# IGNORE SPEECH DETECTION - it was causing instability
# We now track ONE person from start to finish, regardless of who speaks
# OLD LOGIC (commented out - was causing issues):
# This logic would switch based on "who is more centered" which caused constant switching
if False: # Disabled
# Calculate distance from center for each face
center_distances = []
for idx, face in enumerate(faces):
# Euclidean distance from frame center
dx = face.center_x - frame_center_x
dy = face.center_y - frame_center_y
distance = np.sqrt(dx**2 + dy**2)
center_distances.append((idx, distance, face.confidence))
# Sort by distance (closest first), then by confidence as tiebreaker
center_distances.sort(key=lambda x: (x[1], -x[2]))
most_centered_idx = center_distances[0][0]
most_centered_distance = center_distances[0][1]
# STICKY BEHAVIOR: If we already have someone selected, only switch if:
# - New person is SIGNIFICANTLY more centered (30% closer to center)
# - OR current person is now very far from center (>40% of frame width)
if self.current_selected_people and len(self.current_selected_people) > 0:
current_idx = self.current_selected_people[0]
if current_idx < len(faces):
current_face = faces[current_idx]
current_dx = current_face.center_x - frame_center_x
current_dy = current_face.center_y - frame_center_y
current_distance = np.sqrt(current_dx**2 + current_dy**2)
# Define "significantly better" threshold
max_acceptable_distance = frame_width * 0.4 # 40% of frame width
improvement_threshold = 0.7 # New person must be 30% closer (0.7 ratio)
# Keep current person if they're still reasonably centered
if current_distance < max_acceptable_distance:
# Current person is still acceptable - only switch if new is MUCH better
if most_centered_distance < current_distance * improvement_threshold:
desired_person_idx = most_centered_idx
logger.debug(f"Switching: new person MUCH more centered ({most_centered_distance:.0f} vs {current_distance:.0f})")
else:
desired_person_idx = current_idx # Keep current
logger.debug(f"Keeping current person: still reasonably centered ({current_distance:.0f} px from center)")
else:
# Current person is too far from center - switch
desired_person_idx = most_centered_idx
logger.debug(f"Current person too far from center ({current_distance:.0f} px), switching")
else:
# Current selection invalid
desired_person_idx = most_centered_idx
else:
# First time - select most centered
desired_person_idx = most_centered_idx
# Wrap in list for compatibility with existing code
desired_people = [desired_person_idx] if desired_person_idx is not None else []
# ULTRA-STABLE MODE: NO SWITCHING LOGIC AT ALL
# Simply set the person and never change
if not self.current_selected_people:
# First time only
self.current_selected_people = desired_people
self.last_switch_frame = frame_number
logger.info(f"Frame {frame_number}: LOCKED ON person {desired_people} - will never switch")
else:
# Already have someone - just update to desired (which is same person due to logic above)
self.current_selected_people = desired_people
return self.current_selected_people.copy()
def _ensure_distinct_people(
self,
faces: List[FaceDetection],
people_indices: List[int]
) -> List[int]:
"""
Ensure selected people are distinct by checking minimum distance between them.
Prevents showing the same person twice due to duplicate detection.
Args:
faces: List of detected faces
people_indices: Indices of people to validate
Returns:
List of distinct people indices (max 2)
"""
if len(people_indices) <= 1:
return people_indices
distinct_people = []
for idx in people_indices:
if idx >= len(faces):
continue
current_face = faces[idx]
is_distinct = True
# Check if this person is too close to any already selected person
for selected_idx in distinct_people:
selected_face = faces[selected_idx]
# Calculate distance between face centers
dx = current_face.center_x - selected_face.center_x
dy = current_face.center_y - selected_face.center_y
distance = np.sqrt(dx**2 + dy**2)
# Also check overlap via IoU (Intersection over Union)
x1_overlap = max(current_face.x, selected_face.x)
y1_overlap = max(current_face.y, selected_face.y)
x2_overlap = min(current_face.x + current_face.width, selected_face.x + selected_face.width)
y2_overlap = min(current_face.y + current_face.height, selected_face.y + selected_face.height)
overlap_area = 0
if x1_overlap < x2_overlap and y1_overlap < y2_overlap:
overlap_area = (x2_overlap - x1_overlap) * (y2_overlap - y1_overlap)
# Calculate areas
area1 = current_face.width * current_face.height
area2 = selected_face.width * selected_face.height
min_area = min(area1, area2)
# If faces are very close OR significantly overlapping, they're likely the same person
# Minimum distance: 1/4 of average face width
min_distance = (current_face.width + selected_face.width) / 8
overlap_threshold = 0.3 # 30% overlap
if distance < min_distance or (min_area > 0 and overlap_area / min_area > overlap_threshold):
is_distinct = False
logger.debug(f"Person {idx} too similar to person {selected_idx} (dist={distance:.1f}, overlap={overlap_area/min_area if min_area > 0 else 0:.2%})")
break
if is_distinct:
distinct_people.append(idx)
# Stop at 2 distinct people
if len(distinct_people) >= 2:
break
# If we couldn't find 2 distinct people, return at most 1
if len(distinct_people) < 2 and len(people_indices) >= 2:
logger.debug(f"Only {len(distinct_people)} distinct person(s) found from {len(people_indices)} detections")
return distinct_people
def _calculate_focus_point(
self,
faces: List[FaceDetection],
selected_people: List[int]
) -> Optional[Tuple[int, int]]:
"""
Calculate the primary focus point based on selected people with temporal smoothing.
Args:
faces: List of detected faces
selected_people: Indices of people selected for display
Returns:
(x, y) tuple of focus center, or None if no faces
"""
if not faces:
if not faces or not selected_people:
return None
if active_speakers:
speaker_faces = [faces[i] for i in active_speakers if i < len(faces)]
if speaker_faces:
primary_speaker = max(speaker_faces, key=lambda f: f.confidence)
return (primary_speaker.center_x, primary_speaker.center_y)
# Calculate raw focus point
raw_focus_x = 0
raw_focus_y = 0
most_confident = max(faces, key=lambda f: f.confidence)
return (most_confident.center_x, most_confident.center_y)
if len(selected_people) == 1:
# Single person - focus on them
if selected_people[0] < len(faces):
primary = faces[selected_people[0]]
raw_focus_x = primary.center_x
raw_focus_y = primary.center_y
else:
# Fallback
most_confident = max(faces, key=lambda f: f.confidence)
raw_focus_x = most_confident.center_x
raw_focus_y = most_confident.center_y
else:
# Multiple people - focus on the CENTER between them for stability
# This prevents jarring movements when switching focus between people
valid_people = [idx for idx in selected_people if idx < len(faces)]
if valid_people:
centers_x = [faces[idx].center_x for idx in valid_people]
centers_y = [faces[idx].center_y for idx in valid_people]
raw_focus_x = int(np.mean(centers_x))
raw_focus_y = int(np.mean(centers_y))
else:
# Fallback
most_confident = max(faces, key=lambda f: f.confidence)
raw_focus_x = most_confident.center_x
raw_focus_y = most_confident.center_y
# Apply temporal smoothing using focus history
self.focus_history.append((raw_focus_x, raw_focus_y))
if len(self.focus_history) > self.focus_history_size:
self.focus_history.pop(0)
# Calculate smoothed focus as weighted average (more weight to recent frames)
if len(self.focus_history) > 1:
# Exponential weights: recent frames have more influence
weights = [2 ** i for i in range(len(self.focus_history))]
total_weight = sum(weights)
smoothed_x = sum(x * w for (x, y), w in zip(self.focus_history, weights)) / total_weight
smoothed_y = sum(y * w for (x, y), w in zip(self.focus_history, weights)) / total_weight
return (int(smoothed_x), int(smoothed_y))
else:
return (raw_focus_x, raw_focus_y)
def close(self):
"""Release resources."""
self.detector.close()
# Clear tracking state to free memory
self.previous_faces.clear()
self.current_selected_people.clear()
self.focus_history.clear()

View File

@@ -141,8 +141,8 @@ class OpenRouterCopywriter:
logger.warning(f"Highlight ignorado: muito curto ({duration}s, minimo 45s)")
continue
if duration > 120:
logger.warning(f"Highlight ignorado: muito longo ({duration}s, maximo 120s)")
if duration > 90:
logger.warning(f"Highlight ignorado: muito longo ({duration}s, maximo 90s)")
continue
if not summary:

View File

@@ -50,7 +50,10 @@ class MediaPreparer:
existing_children = list(workspace_dir.iterdir())
if existing_children:
logger.info("Limpando workspace existente para %s", sanitized_name)
remove_paths(existing_children)
try:
remove_paths(existing_children)
except Exception as e:
logger.warning(f"Não foi possível limpar workspace (não crítico): {e}")
if temp_transcription_json and temp_transcription_json.exists():
shutil.move(str(temp_transcription_json), str(transcription_json))
@@ -66,7 +69,10 @@ class MediaPreparer:
output_dir = ensure_workspace(self.settings.outputs_dir, sanitized_name)
existing_outputs = list(output_dir.iterdir())
if existing_outputs:
remove_paths(existing_outputs)
try:
remove_paths(existing_outputs)
except Exception as e:
logger.warning(f"Não foi possível limpar outputs antigos (não crítico): {e}")
audio_path = workspace_dir / "audio.wav"
extract_audio_to_wav(working_video_path, audio_path)

View File

@@ -107,6 +107,9 @@ class VideoPipeline:
TranscriptionService.persist(transcription, context.workspace.workspace_dir)
context.transcription = transcription
# Unload Whisper model immediately after transcription to free memory (1-3GB)
self.transcriber.unload_model()
def _determine_highlights(self, context: PipelineContext) -> None:
if not context.transcription:
raise RuntimeError("Transcricao nao disponivel")

View File

@@ -345,7 +345,9 @@ class VideoRenderer:
target_width=settings.rendering.frame_width,
target_height=settings.rendering.frame_height,
frame_skip=settings.rendering.smart_framing_frame_skip,
smoothing_window=settings.rendering.smart_framing_smoothing_window
smoothing_window=settings.rendering.smart_framing_smoothing_window,
max_velocity=settings.rendering.smart_framing_max_velocity,
person_switch_cooldown=settings.rendering.smart_framing_person_switch_cooldown
)
def render(
@@ -436,12 +438,10 @@ class VideoRenderer:
audio_samples=audio_samples
)
# Apply smart framing based on detected layout
use_split_screen = framing_plan.layout_mode in ["dual_split", "grid"]
# Apply smart framing (always single-person focus)
video_clip = self.smart_framer.apply_framing(
video_clip=subclip,
framing_plan=framing_plan,
use_split_screen=use_split_screen
framing_plan=framing_plan
)
logger.info(f"Smart framing applied: layout={framing_plan.layout_mode}, "
@@ -602,6 +602,10 @@ class VideoRenderer:
if audio_clip is not None and audio_needs_close:
audio_clip.close()
# Force garbage collection to free memory after rendering
import gc
gc.collect()
return str(output_path)
def _materialize_audio(

View File

@@ -46,21 +46,20 @@ class SmartFramer:
self,
target_width: int = 1080,
target_height: int = 1920,
frame_skip: int = 2,
smoothing_window: int = 15
frame_skip: int = 1,
smoothing_window: int = 30,
max_velocity: int = 20,
person_switch_cooldown: int = 999999
):
self.target_width = target_width
self.target_height = target_height
self.target_aspect = target_height / target_width
# Performance parameters
self.frame_skip = frame_skip # Process every Nth frame (CPU optimization)
# Smoothing parameters
self.frame_skip = frame_skip
self.smoothing_window = smoothing_window
self.max_velocity = 30 # pixels per frame (reduced for smoother transitions)
self.max_velocity = max_velocity
self.person_switch_cooldown = person_switch_cooldown
logger.info(f"Smart framer initialized (target: {target_width}x{target_height}, frame_skip={frame_skip})")
logger.info(f"Smart framer initialized (target: {target_width}x{target_height}, frame_skip={frame_skip}, smoothing={smoothing_window}, velocity={max_velocity}, cooldown={person_switch_cooldown})")
def create_framing_plan(
self,
@@ -81,25 +80,21 @@ class SmartFramer:
Returns:
FramingPlan with all frame contexts and crop regions
"""
analyzer = ContextAnalyzer()
analyzer = ContextAnalyzer(person_switch_cooldown=self.person_switch_cooldown)
# Detect speaking periods from audio if available
speaking_periods = None
if audio_samples is not None:
speaking_periods = analyzer.audio_detector.detect_speaking_periods(audio_samples)
# Open video with error suppression for AV1 codec warnings
import os
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'loglevel;quiet'
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate frame range
start_frame = int(start_time * fps)
end_frame = int(end_time * fps)
# Set to start frame
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frame_contexts = []
@@ -113,7 +108,6 @@ class SmartFramer:
if not ret:
break
# Only process every Nth frame for performance (CPU optimization)
if processed_count % self.frame_skip == 0:
timestamp = frame_number / fps
context = analyzer.analyze_frame(frame, timestamp, frame_number, speaking_periods)
@@ -122,35 +116,36 @@ class SmartFramer:
frame_number += 1
processed_count += 1
# Get video dimensions before releasing capture
source_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
source_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
analyzer.close()
# Determine overall layout mode (most common)
layout_modes = [ctx.layout_mode for ctx in frame_contexts]
if layout_modes:
overall_layout = max(set(layout_modes), key=layout_modes.count)
else:
overall_layout = "single"
# Calculate crop regions based on contexts
crop_regions = self._calculate_crop_regions(
frame_contexts,
source_width,
source_height
)
return FramingPlan(
framing_plan = FramingPlan(
frame_contexts=frame_contexts,
crop_regions=crop_regions,
layout_mode=overall_layout,
fps=fps
)
import gc
gc.collect()
return framing_plan
def _calculate_crop_regions(
self,
contexts: List[FrameContext],
@@ -171,66 +166,122 @@ class SmartFramer:
if not contexts:
return []
# Calculate ideal crop dimensions maintaining EXACT 9:16 aspect ratio
source_aspect = source_width / source_height
if source_aspect > self.target_aspect:
# Source is wider - crop horizontally (use full height)
crop_height = source_height
crop_width = int(crop_height / self.target_aspect)
# Ensure crop width fits within source
if crop_width > source_width:
crop_width = source_width
crop_height = int(crop_width * self.target_aspect)
else:
# Source is taller - crop vertically (use full width)
crop_width = source_width
crop_height = int(crop_width * self.target_aspect)
# Ensure crop height fits within source
if crop_height > source_height:
crop_height = source_height
crop_width = int(crop_height / self.target_aspect)
# Calculate center points for each frame
# Since we now always focus on ONE person directly (not averaging),
# we can use the focus point directly without complex validation
center_xs = []
center_ys = []
safe_zone_margin_x = crop_width * 0.40
safe_zone_margin_y = crop_height * 0.40
for ctx in contexts:
if ctx.primary_focus:
# Primary focus is now always a single person's center, never averaged
# This means it will never be on the table/empty space
center_xs.append(ctx.primary_focus[0])
center_ys.append(ctx.primary_focus[1])
dead_zone_threshold = 100
if contexts and contexts[0].primary_focus:
current_crop_center_x = contexts[0].primary_focus[0]
current_crop_center_y = contexts[0].primary_focus[1]
else:
current_crop_center_x = source_width // 2
current_crop_center_y = source_height // 2
center_xs = [current_crop_center_x]
center_ys = [current_crop_center_y]
for ctx in contexts[1:]:
if ctx.primary_focus and ctx.selected_people and len(ctx.detected_faces) > 0:
primary_person_idx = ctx.selected_people[0] if ctx.selected_people else 0
if primary_person_idx < len(ctx.detected_faces):
face = ctx.detected_faces[primary_person_idx]
face_left = face.x
face_right = face.x + face.width
face_top = face.y
face_bottom = face.y + face.height
crop_left = current_crop_center_x - crop_width // 2
crop_right = current_crop_center_x + crop_width // 2
crop_top = current_crop_center_y - crop_height // 2
crop_bottom = current_crop_center_y + crop_height // 2
face_rel_left = face_left - crop_left
face_rel_right = face_right - crop_left
face_rel_top = face_top - crop_top
face_rel_bottom = face_bottom - crop_top
face_left_safe = face_rel_left >= safe_zone_margin_x
face_right_safe = face_rel_right <= (crop_width - safe_zone_margin_x)
face_top_safe = face_rel_top >= safe_zone_margin_y
face_bottom_safe = face_rel_bottom <= (crop_height - safe_zone_margin_y)
face_fully_visible = face_left_safe and face_right_safe and face_top_safe and face_bottom_safe
if face_fully_visible:
center_xs.append(current_crop_center_x)
center_ys.append(current_crop_center_y)
else:
shift_x = 0
shift_y = 0
if not face_left_safe:
shift_x = face_rel_left - safe_zone_margin_x
elif not face_right_safe:
shift_x = face_rel_right - (crop_width - safe_zone_margin_x)
if not face_top_safe:
shift_y = face_rel_top - safe_zone_margin_y
elif not face_bottom_safe:
shift_y = face_rel_bottom - (crop_height - safe_zone_margin_y)
if abs(shift_x) > dead_zone_threshold:
current_crop_center_x += shift_x
if abs(shift_y) > dead_zone_threshold:
current_crop_center_y += shift_y
center_xs.append(current_crop_center_x)
center_ys.append(current_crop_center_y)
else:
center_xs.append(current_crop_center_x)
center_ys.append(current_crop_center_y)
else:
# Default to center only if no faces detected at all
center_xs.append(source_width // 2)
center_ys.append(source_height // 2)
center_xs.append(current_crop_center_x)
center_ys.append(current_crop_center_y)
# Smooth the center points
if len(center_xs) > self.smoothing_window:
kernel_size = min(self.smoothing_window, len(center_xs))
if kernel_size % 2 == 0:
kernel_size -= 1
if len(center_xs) > 1:
alpha = 0.002
smoothed_xs = [center_xs[0]]
smoothed_ys = [center_ys[0]]
for i in range(1, len(center_xs)):
if center_xs[i] != center_xs[i-1] or center_ys[i] != center_ys[i-1]:
smoothed_xs.append(alpha * center_xs[i] + (1 - alpha) * smoothed_xs[i-1])
smoothed_ys.append(alpha * center_ys[i] + (1 - alpha) * smoothed_ys[i-1])
else:
smoothed_xs.append(smoothed_xs[i-1])
smoothed_ys.append(smoothed_ys[i-1])
center_xs = smoothed_xs
center_ys = smoothed_ys
center_xs = signal.medfilt(center_xs, kernel_size=kernel_size).tolist()
center_ys = signal.medfilt(center_ys, kernel_size=kernel_size).tolist()
center_xs = self._limit_velocity(center_xs, 2)
center_ys = self._limit_velocity(center_ys, 2)
# Limit velocity (prevent jarring movements)
center_xs = self._limit_velocity(center_xs, self.max_velocity)
center_ys = self._limit_velocity(center_ys, self.max_velocity)
center_xs = self._apply_dead_zone(center_xs, 5)
center_ys = self._apply_dead_zone(center_ys, 5)
# Convert to crop regions
crop_regions = []
for center_x, center_y in zip(center_xs, center_ys):
# Calculate top-left corner
x = int(center_x - crop_width // 2)
y = int(center_y - crop_height // 2)
# Clamp to valid bounds
x = max(0, min(x, source_width - crop_width))
y = max(0, min(y, source_height - crop_height))
@@ -241,8 +292,37 @@ class SmartFramer:
height=crop_height
))
center_xs.clear()
center_ys.clear()
return crop_regions
def _apply_dead_zone(self, positions: List[float], threshold: float) -> List[float]:
"""
Apply dead zone to eliminate micro-movements.
If change is smaller than threshold, keep previous position.
Args:
positions: List of positions
threshold: Minimum change needed to move (pixels)
Returns:
Positions with dead zone applied
"""
if len(positions) <= 1:
return positions
filtered = [positions[0]]
for i in range(1, len(positions)):
delta = abs(positions[i] - filtered[i - 1])
if delta < threshold:
filtered.append(filtered[i - 1])
else:
filtered.append(positions[i])
return filtered
def _limit_velocity(self, positions: List[float], max_velocity: float) -> List[float]:
"""
Limit the velocity of position changes.
@@ -271,33 +351,20 @@ class SmartFramer:
def apply_framing(
self,
video_clip: VideoFileClip,
framing_plan: FramingPlan,
use_split_screen: bool = False
framing_plan: FramingPlan
) -> VideoClip:
"""
Apply smart framing to a video clip.
Always uses single-person focus (no split screen).
Args:
video_clip: Source video clip
framing_plan: Framing plan to apply
use_split_screen: Whether to use split screen for multiple people
Returns:
Reframed video clip
"""
# Handle different layout modes
if framing_plan.layout_mode in ["single", "single_speaker"]:
# Single person or single speaker - use focused single framing
return self._apply_single_framing(video_clip, framing_plan)
elif framing_plan.layout_mode == "dual_split" and use_split_screen:
# Two people in conversation - use split screen
return self._apply_split_screen(video_clip, framing_plan)
elif framing_plan.layout_mode == "grid" and use_split_screen:
# 3+ people - use grid layout
return self._apply_grid_layout(video_clip, framing_plan)
else:
# Fallback to single framing
return self._apply_single_framing(video_clip, framing_plan)
return self._apply_single_framing(video_clip, framing_plan)
def _apply_single_framing(
self,
@@ -315,12 +382,9 @@ class SmartFramer:
Reframed video clip
"""
def make_frame(t):
# Get the original frame
frame = video_clip.get_frame(t)
# Ensure we have valid crop regions
if not framing_plan.crop_regions:
# Fallback: return center crop
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
@@ -331,41 +395,32 @@ class SmartFramer:
x = (w - crop_w) // 2
cropped = frame[y:y + crop_h, x:x + crop_w]
else:
# Calculate exact frame index with decimal precision for interpolation
exact_frame_idx = (t * framing_plan.fps) / self.frame_skip
# Get the two adjacent analyzed frames
idx_floor = int(exact_frame_idx)
idx_ceil = idx_floor + 1
# Interpolation factor (0.0 to 1.0)
alpha = exact_frame_idx - idx_floor
# Clamp indices to valid range
idx_floor = max(0, min(idx_floor, len(framing_plan.crop_regions) - 1))
idx_ceil = max(0, min(idx_ceil, len(framing_plan.crop_regions) - 1))
# Get crop regions
crop1 = framing_plan.crop_regions[idx_floor]
crop2 = framing_plan.crop_regions[idx_ceil]
# Linear interpolation between crop regions
x = int(crop1.x * (1 - alpha) + crop2.x * alpha)
y = int(crop1.y * (1 - alpha) + crop2.y * alpha)
width = int(crop1.width * (1 - alpha) + crop2.width * alpha)
height = int(crop1.height * (1 - alpha) + crop2.height * alpha)
# Ensure crop stays within frame bounds
h, w = frame.shape[:2]
x = max(0, min(x, w - width))
y = max(0, min(y, h - height))
width = min(width, w - x)
height = min(height, h - y)
# Crop the frame
cropped = frame[y:y + height, x:x + width]
# Resize to target dimensions
resized = cv2.resize(
cropped,
(self.target_width, self.target_height),
@@ -374,7 +429,6 @@ class SmartFramer:
return resized
# MoviePy 2.x compatible way to create VideoClip
new_clip = VideoClip(duration=video_clip.duration)
new_clip.size = (self.target_width, self.target_height)
new_clip.frame_function = make_frame
@@ -397,13 +451,10 @@ class SmartFramer:
"""
def make_frame(t):
frame = video_clip.get_frame(t)
# Calculate exact frame index with decimal precision for smooth interpolation
exact_frame_idx = (t * framing_plan.fps) / self.frame_skip
frame_idx = int(exact_frame_idx)
# Ensure we have valid contexts
if not framing_plan.frame_contexts:
# Fallback to simple center crop
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
@@ -415,107 +466,81 @@ class SmartFramer:
cropped = frame[y:y + crop_h, x:x + crop_w]
return cv2.resize(cropped, (self.target_width, self.target_height), interpolation=cv2.INTER_LINEAR)
# Clamp index to valid range
frame_idx = max(0, min(frame_idx, len(framing_plan.frame_contexts) - 1))
context = framing_plan.frame_contexts[frame_idx]
# Create output frame
output = np.zeros((self.target_height, self.target_width, 3), dtype=np.uint8)
if len(context.detected_faces) >= 2:
# Split vertically 50/50 (two columns)
half_width = self.target_width // 2
if context.selected_people and len(context.selected_people) >= 2:
selected_faces = [context.detected_faces[i] for i in context.selected_people[:2]
if i < len(context.detected_faces)]
# Select the 2 most relevant faces
# Priority: ALWAYS show active speaker first + most confident other person
if context.active_speakers and len(context.active_speakers) >= 1:
# Get the PRIMARY speaker (most confident among active speakers)
speaker_faces = [context.detected_faces[i] for i in context.active_speakers
if i < len(context.detected_faces)]
if len(selected_faces) >= 2:
faces = sorted(selected_faces, key=lambda f: f.center_x)
left_face = faces[0]
right_face = faces[1]
primary_speaker = max(speaker_faces, key=lambda f: f.confidence)
for idx, face in enumerate([left_face, right_face]):
# Get OTHER faces (not the primary speaker)
other_faces = [f for f in context.detected_faces if f != primary_speaker]
half_width = self.target_width // 2
half_aspect = self.target_height / half_width # Aspect ratio for half
if len(speaker_faces) >= 2:
# Multiple speakers: show primary + second most confident speaker
other_speakers = [f for f in speaker_faces if f != primary_speaker]
secondary_person = max(other_speakers, key=lambda f: f.confidence)
elif other_faces:
# One speaker: show speaker + most confident other person
secondary_person = max(other_faces, key=lambda f: f.confidence)
else:
# Fallback: only one person detected
secondary_person = primary_speaker
face_width = max(face.width, frame.shape[1] // 4) # At least 1/4 of frame width
crop_width = int(face_width * 2.5) # Add padding around face
crop_height = int(crop_width * half_aspect) # Maintain correct aspect
selected_faces = [primary_speaker, secondary_person]
max_crop_width = frame.shape[1] // 2 # Half the source width
max_crop_height = frame.shape[0] # Full source height
if crop_width > max_crop_width:
crop_width = max_crop_width
crop_height = int(crop_width * half_aspect)
if crop_height > max_crop_height:
crop_height = max_crop_height
crop_width = int(crop_height / half_aspect)
x = max(0, face.center_x - crop_width // 2)
y = max(0, face.center_y - crop_height // 2)
x = min(x, frame.shape[1] - crop_width)
y = min(y, frame.shape[0] - crop_height)
cropped = frame[y:y + crop_height, x:x + crop_width]
resized = cv2.resize(
cropped,
(half_width, self.target_height),
interpolation=cv2.INTER_LINEAR
)
x_offset = idx * half_width
output[:, x_offset:x_offset + half_width] = resized
else:
# No speakers: take 2 most confident faces
selected_faces = sorted(context.detected_faces, key=lambda f: f.confidence, reverse=True)[:2]
# Sort selected faces by horizontal position for consistent left/right placement
faces = sorted(selected_faces, key=lambda f: f.center_x)
left_face = faces[0]
right_face = faces[1]
# Process each person's frame
for idx, face in enumerate([left_face, right_face]):
# Calculate crop region focused on this person
# Each person gets half the width, full target aspect ratio (9:16)
# This ensures NO distortion when resizing
# For split screen: each side is half_width x full_height
# We need to maintain 9:16 aspect for each half
half_width = self.target_width // 2
half_aspect = self.target_height / half_width # Aspect ratio for half
# Determine crop size based on face with padding
face_width = max(face.width, frame.shape[1] // 4) # At least 1/4 of frame width
crop_width = int(face_width * 2.5) # Add padding around face
crop_height = int(crop_width * half_aspect) # Maintain correct aspect
# Ensure crop fits in frame, maintaining aspect ratio
max_crop_width = frame.shape[1] // 2 # Half the source width
max_crop_height = frame.shape[0] # Full source height
# If crop is too wide, scale down proportionally
if crop_width > max_crop_width:
crop_width = max_crop_width
crop_height = int(crop_width * half_aspect)
# If crop is too tall, scale down proportionally
if crop_height > max_crop_height:
crop_height = max_crop_height
crop_width = int(crop_height / half_aspect)
# Center crop on face
x = max(0, face.center_x - crop_width // 2)
y = max(0, face.center_y - crop_height // 2)
# Clamp to frame boundaries
x = min(x, frame.shape[1] - crop_width)
y = min(y, frame.shape[0] - crop_height)
# Extract and resize crop
cropped = frame[y:y + crop_height, x:x + crop_width]
resized = cv2.resize(
if framing_plan.crop_regions:
crop_idx = max(0, min(frame_idx, len(framing_plan.crop_regions) - 1))
crop = framing_plan.crop_regions[crop_idx]
cropped = frame[crop.y:crop.y + crop.height, crop.x:crop.x + crop.width]
else:
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
if crop_h > h:
crop_h = h
crop_w = int(h / self.target_aspect)
y = (h - crop_h) // 2
x = (w - crop_w) // 2
cropped = frame[y:y + crop_h, x:x + crop_w]
output = cv2.resize(
cropped,
(half_width, self.target_height),
(self.target_width, self.target_height),
interpolation=cv2.INTER_LINEAR
)
# Place in output at appropriate horizontal position
x_offset = idx * half_width
output[:, x_offset:x_offset + half_width] = resized
else:
# Fall back to single framing
if framing_plan.crop_regions:
crop_idx = max(0, min(frame_idx, len(framing_plan.crop_regions) - 1))
crop = framing_plan.crop_regions[crop_idx]
cropped = frame[crop.y:crop.y + crop.height, crop.x:crop.x + crop.width]
else:
# Fallback to center crop if no crop regions available
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
@@ -533,7 +558,6 @@ class SmartFramer:
return output
# MoviePy 2.x compatible way to create VideoClip
new_clip = VideoClip(duration=video_clip.duration)
new_clip.size = (self.target_width, self.target_height)
new_clip.frame_function = make_frame
@@ -556,13 +580,10 @@ class SmartFramer:
"""
def make_frame(t):
frame = video_clip.get_frame(t)
# Calculate exact frame index with decimal precision for smooth interpolation
exact_frame_idx = (t * framing_plan.fps) / self.frame_skip
frame_idx = int(exact_frame_idx)
# Ensure we have valid contexts
if not framing_plan.frame_contexts:
# Fallback to simple center crop
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
@@ -574,7 +595,6 @@ class SmartFramer:
cropped = frame[y:y + crop_h, x:x + crop_w]
return cv2.resize(cropped, (self.target_width, self.target_height), interpolation=cv2.INTER_LINEAR)
# Clamp index to valid range
frame_idx = max(0, min(frame_idx, len(framing_plan.frame_contexts) - 1))
context = framing_plan.frame_contexts[frame_idx]
@@ -583,23 +603,18 @@ class SmartFramer:
num_faces = len(context.detected_faces)
if num_faces >= 3:
# Create 2x2 grid
cell_width = self.target_width // 2
cell_height = self.target_height // 2
for idx, face in enumerate(context.detected_faces[:4]):
# Calculate grid position
row = idx // 2
col = idx % 2
# Each grid cell maintains aspect ratio (square in this case: cell_width = cell_height)
cell_aspect = cell_height / cell_width
# Crop around face with correct aspect ratio
crop_width = frame.shape[1] // 2
crop_height = int(crop_width * cell_aspect)
# Ensure crop fits in frame, maintaining aspect
max_crop_width = frame.shape[1] // 2
max_crop_height = frame.shape[0] // 2
@@ -611,11 +626,9 @@ class SmartFramer:
crop_height = max_crop_height
crop_width = int(crop_height / cell_aspect)
# Center crop on face
x = max(0, face.center_x - crop_width // 2)
y = max(0, face.center_y - crop_height // 2)
# Clamp to frame boundaries
x = min(x, frame.shape[1] - crop_width)
y = min(y, frame.shape[0] - crop_height)
@@ -626,18 +639,15 @@ class SmartFramer:
interpolation=cv2.INTER_LINEAR
)
# Place in grid
y_offset = row * cell_height
x_offset = col * cell_width
output[y_offset:y_offset + cell_height, x_offset:x_offset + cell_width] = resized
else:
# Fall back to single framing
if framing_plan.crop_regions:
crop_idx = max(0, min(frame_idx, len(framing_plan.crop_regions) - 1))
crop = framing_plan.crop_regions[crop_idx]
cropped = frame[crop.y:crop.y + crop.height, crop.x:crop.x + crop.width]
else:
# Fallback to center crop if no crop regions available
h, w = frame.shape[:2]
crop_h = int(w * self.target_aspect)
crop_w = w
@@ -655,7 +665,6 @@ class SmartFramer:
return output
# MoviePy 2.x compatible way to create VideoClip
new_clip = VideoClip(duration=video_clip.duration)
new_clip.size = (self.target_width, self.target_height)
new_clip.frame_function = make_frame

View File

@@ -6,6 +6,7 @@ from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
import numpy as np
from faster_whisper import WhisperModel
from video_render.config import Settings
@@ -56,6 +57,17 @@ class TranscriptionService:
)
return self._model
def unload_model(self) -> None:
"""Unload the Whisper model to free memory (reduces RAM usage by 1-3GB)."""
if self._model is not None:
logger.info("Descarregando modelo Whisper para liberar memória...")
del self._model
self._model = None
# Force garbage collection to immediately free GPU/CPU memory
import gc
gc.collect()
logger.info("Modelo Whisper descarregado com sucesso")
def transcribe(self, audio_path: Path, output_dir: Optional[Path] = None) -> TranscriptionResult:
if output_dir is not None:
existing_transcription = self.load(output_dir)
@@ -63,7 +75,34 @@ class TranscriptionService:
logger.info("Transcrição já existe em %s, reutilizando...", output_dir)
return existing_transcription
logger.info("Iniciando transcrição do áudio com FasterWhisper...")
# Get audio duration to decide if we need chunked processing
audio_duration = self._get_audio_duration(audio_path)
chunk_duration_minutes = 30 # Process in 30-minute chunks for long videos
chunk_duration_seconds = chunk_duration_minutes * 60
# For videos longer than 30 minutes, use chunked processing to avoid OOM
if audio_duration > chunk_duration_seconds:
logger.info(
f"Áudio longo detectado ({audio_duration/60:.1f} min). "
f"Processando em chunks de {chunk_duration_minutes} min para evitar erro de memória..."
)
return self._transcribe_chunked(audio_path, chunk_duration_seconds)
else:
logger.info(f"Iniciando transcrição do áudio ({audio_duration/60:.1f} min) com FasterWhisper...")
return self._transcribe_full(audio_path)
def _get_audio_duration(self, audio_path: Path) -> float:
"""Get audio duration in seconds."""
try:
from moviepy.audio.io.AudioFileClip import AudioFileClip
with AudioFileClip(str(audio_path)) as audio:
return audio.duration or 0.0
except Exception as e:
logger.warning(f"Falha ao obter duração do áudio, assumindo curto: {e}")
return 0.0 # Assume short if we can't determine
def _transcribe_full(self, audio_path: Path) -> TranscriptionResult:
"""Transcribe entire audio at once (for shorter videos)."""
model = self._load_model()
segments, _ = model.transcribe(
str(audio_path),
@@ -97,6 +136,101 @@ class TranscriptionService:
full_text=" ".join(full_text_parts).strip(),
)
def _transcribe_chunked(self, audio_path: Path, chunk_duration: float) -> TranscriptionResult:
"""Transcribe audio in chunks to avoid OOM on long videos."""
import subprocess
from moviepy.audio.io.AudioFileClip import AudioFileClip
model = self._load_model()
all_segments: List[TranscriptSegment] = []
full_text_parts: List[str] = []
segment_id_counter = 0
# Get total duration
total_duration = self._get_audio_duration(audio_path)
num_chunks = int(np.ceil(total_duration / chunk_duration))
logger.info(f"Processando áudio em {num_chunks} chunks...")
for chunk_idx in range(num_chunks):
start_time = chunk_idx * chunk_duration
end_time = min((chunk_idx + 1) * chunk_duration, total_duration)
logger.info(
f"Processando chunk {chunk_idx + 1}/{num_chunks} "
f"({start_time/60:.1f}min - {end_time/60:.1f}min)..."
)
# Extract chunk using ffmpeg directly (more reliable than moviepy subclip)
temp_chunk_path = audio_path.parent / f"temp_chunk_{chunk_idx}.wav"
try:
# Use ffmpeg to extract the chunk
chunk_duration_actual = end_time - start_time
ffmpeg_cmd = [
'ffmpeg',
'-y', # Overwrite output file
'-ss', str(start_time), # Start time
'-i', str(audio_path), # Input file
'-t', str(chunk_duration_actual), # Duration
'-acodec', 'pcm_s16le', # Audio codec
'-ar', '44100', # Sample rate
'-ac', '2', # Stereo
'-loglevel', 'error', # Only show errors
str(temp_chunk_path)
]
subprocess.run(ffmpeg_cmd, check=True, capture_output=True)
# Transcribe chunk
segments, _ = model.transcribe(
str(temp_chunk_path),
beam_size=5,
word_timestamps=True,
)
# Process segments with time offset
for segment in segments:
words = [
WordTiming(
start=w.start + start_time,
end=w.end + start_time,
word=w.word.strip()
)
for w in segment.words or []
if w.word.strip()
]
text = segment.text.strip()
full_text_parts.append(text)
all_segments.append(
TranscriptSegment(
id=segment_id_counter,
start=segment.start + start_time,
end=segment.end + start_time,
text=text,
words=words,
)
)
segment_id_counter += 1
# Force garbage collection after each chunk
import gc
gc.collect()
except subprocess.CalledProcessError as e:
logger.error(f"Erro ao extrair chunk {chunk_idx}: {e.stderr.decode() if e.stderr else str(e)}")
raise
finally:
# Clean up temp chunk
if temp_chunk_path.exists():
temp_chunk_path.unlink()
logger.info(f"Transcrição em chunks concluída: {len(all_segments)} segmentos processados")
return TranscriptionResult(
segments=all_segments,
full_text=" ".join(full_text_parts).strip(),
)
@staticmethod
def persist(result: TranscriptionResult, destination: Path) -> None:
json_path = destination / "transcription.json"

View File

@@ -23,16 +23,58 @@ def ensure_workspace(root: Path, folder_name: str) -> Path:
def remove_paths(paths: Iterable[Path]) -> None:
import logging
import time
logger = logging.getLogger(__name__)
for path in paths:
if not path.exists():
continue
if path.is_file() or path.is_symlink():
path.unlink(missing_ok=True)
else:
for child in sorted(path.rglob("*"), reverse=True):
if child.is_file() or child.is_symlink():
child.unlink(missing_ok=True)
elif child.is_dir():
child.rmdir()
path.rmdir()
# Try to remove with retries and better error handling
max_retries = 3
for attempt in range(max_retries):
try:
if path.is_file() or path.is_symlink():
path.unlink(missing_ok=True)
else:
for child in sorted(path.rglob("*"), reverse=True):
if child.is_file() or child.is_symlink():
try:
child.unlink(missing_ok=True)
except PermissionError:
logger.warning(f"Não foi possível deletar {child}: sem permissão")
# Try to change permissions and retry
try:
child.chmod(0o777)
child.unlink(missing_ok=True)
except Exception as e:
logger.warning(f"Falha ao forçar deleção de {child}: {e}")
elif child.is_dir():
try:
child.rmdir()
except (PermissionError, OSError) as e:
logger.warning(f"Não foi possível remover diretório {child}: {e}")
try:
path.rmdir()
except (PermissionError, OSError) as e:
logger.warning(f"Não foi possível remover diretório {path}: {e}")
break # Success, exit retry loop
except PermissionError as e:
if attempt < max_retries - 1:
logger.warning(f"Tentativa {attempt + 1}/{max_retries} falhou ao deletar {path}: {e}. Tentando novamente...")
time.sleep(0.5) # Wait a bit before retry
# Try to change permissions
try:
path.chmod(0o777)
except Exception:
pass
else:
logger.error(f"Não foi possível deletar {path} após {max_retries} tentativas: {e}")
except Exception as e:
logger.error(f"Erro inesperado ao deletar {path}: {e}")
break # Don't retry on unexpected errors